Criteria for selection and prioritisation of spring-sheds

ANNUAL RAINFALL

Source: Aquifers Systems in Meghalaya- Govt. of India Ministry of Water Resources, Central Ground Water Board, North Eastern

Composite climate vulnerability Index

District –wise distribution of Spring-sheds based on their vulnerability

DISTRICT	Model I	Model II	Model III
East Khasi Hills	30	10	10
West Khasi Hills	20	10	10
South West Khasi Hills	20	10	10
Ri-Bhoi	10	8	10
East Jaintia Hills	10	8	10
West Jaintia Hills	12	8	10
East Garo Hills	10	5	6
West Garo Hills	10	8	6
South Garo Hills	-	10	5
South West Garo Hills	-	10	5
North Garo Hills	-	10	5
TOTAL	122	97	87
Total No of spring-sheds		306	

Model wise distribution of different activities

Activity	Model I	Model II	Model III	
Afforestation (in ha)	3	2 3		
Structural measures				
Contour trenches (in nos.)	300	200	100	
Dug-out (in nos.)	55	40	25	
Check dams (in nos.)	3	2		
Spring chambers (in nos.)	1	1	1	

The Activities which will be implemented will have the following outputs

- 306 water security plans
- 64700 trenches
- 12765 dugouts
- 560 check dams
- 306 spring chambers
- Afforestation of
- 827 ha of forest

Department of Science & Technology Centre for Excellence

NMSHE NATIONAL MISSION FOR SUSTAINING THE HIMALAYAN ECOSYSTEM

M E G H A L A Y A CLIMATE CHANGE CENTRE

Reach us at: Meghalaya Climate Change Centre, Meghalaya Basin Development Authority, Nongrim Hills, Shillong.

Email us: cccmegh@gmail.com

REJUVENATION AND CLIMATE PROOFING OF SPRING-SHEDS FOR LIVELIHOOD, WATER AND FOOD SECURITY IN MEGHALAYA

A Project Approved Under NAFCC

Meghalaya is one of the few Indian States to receive assistance under the National Adaptation Fund for Climate Change (NAFCC)

One of many living root bridges under threat due to spring impairment

Background

- Springs are the main source of water for household and irrigation purposes for more than 6000 villages (78%)
- About a quarter of the villagers depend exclusively on springs for drinking water (census 2011 estimate)
- The State has over 60,000 springs
- A sample survey of 714 springs (MINR, 2015) on random basis has revealed that over 54% of the springs have either dried or water discharge from them has significantly reduced (< 50%)
- Meghalaya is highly vulnerable to climate change, despite heavy rainfall, many areas are water-stressed due to increasing demand-supply gap leading to increasing use of ground water and high runoff
- Ground water data shows that the depletion rate between pre and post monsoon period is about 40-80% depending on the landscape.
- Changing land use, quarrying, mining and climate change are perceived to be the main causes for the deteriorating state of springs and ground water regime
- Impaired springs have caused wide spread water stress in the rural landscape, adversely affecting agriculture, live stock and other allied livelihood activities of the people and causing hardship and drudgery

The project aims to revive impaired springs lotoion springshed development works in a landscape approach to maintain base-flow of springs to ensure water security for the stakeholders through the scientific and participatory management techniques, and reduce vulnerability of dependent communities & ensure livelihood security in the face of climate change

Components	Activities
Inventorisa- tion of spring sheds and prioritization	Spring-shed/Hydrogeological mapping Social profile mapping
	Spring monitoring (to estimate flow, recharge area, transmissivity) through a landscape approach
	Data analysis and finalization of spring- sheds for structural measures
Spring rejuve- nation struc- tural measures	Construction of check dams, trenches, dug-out ponds
	Afforestation measures
	Village water security plan
Livelihood interventions	Fodder development
	Agro-silivi and horticultural interventions
	Livestock promotion
Capacity building	Creation of modules and developing a cadre of para- hydrogeologists
	Crop-water planning & crop calendar development, post-harvest manage- ment
	IEC materials for spring management and water budgeting, spring monitoring, sanitation issues
	Spring MIS creation & reporting
Project man- agement	M&E for mapping the climate benefit
	Policy briefs and documentation of pro- ject learning
	Supporting third party MRV

In 11 districts of Meghalaya in two steps;

Step I : Interventions to be done in the identified spring-sheds based on the vulnerability assessment

Step II: Spring-shed development works

306 vulnerable spring-sheds would be **prioritised** for interventions in locations most vulnerable to climate

